AI Evaluations

Hallucination

LLMs

How to Build an LLM Evaluation Framework from Scratch

How to Build an LLM Evaluation Framework from Scratch

How to Build an LLM Evaluation Framework from Scratch

How to Build an LLM Evaluation Framework from Scratch

How to Build an LLM Evaluation Framework from Scratch

How to Build an LLM Evaluation Framework from Scratch

How to Build an LLM Evaluation Framework from Scratch

Last Updated

May 30, 2025

May 30, 2025

May 30, 2025

May 30, 2025

May 30, 2025

May 30, 2025

May 30, 2025

May 30, 2025

By

Rishav Hada
Rishav Hada
Rishav Hada

Time to read

5 mins

Future AGI guide on building an LLM evaluation framework from scratch for accurate, bias-free, and high-performance AI model assessment
Future AGI guide on building an LLM evaluation framework from scratch for accurate, bias-free, and high-performance AI model assessment
Future AGI guide on building an LLM evaluation framework from scratch for accurate, bias-free, and high-performance AI model assessment
Future AGI guide on building an LLM evaluation framework from scratch for accurate, bias-free, and high-performance AI model assessment
Future AGI guide on building an LLM evaluation framework from scratch for accurate, bias-free, and high-performance AI model assessment
Future AGI guide on building an LLM evaluation framework from scratch for accurate, bias-free, and high-performance AI model assessment
Future AGI guide on building an LLM evaluation framework from scratch for accurate, bias-free, and high-performance AI model assessment

Table of Contents

TABLE OF CONTENTS

  1. Introduction

How do you keep a powerful large-language model honest? The answer, of course, is relentless evaluation. Therefore, any team shipping an LLM must anchor its work in a rigorous LLM evaluation framework—one that tracks accuracy, relevance, coherence, factual consistency, and bias while handing engineers a steady stream of hard benchmarks.


  1. What Is an LLM Evaluation Framework?

Think of an LLM evaluation framework as a two-layer safety net. On one layer sit automated metrics—BLEU, ROUGE, F1 Score, BERTScore, Exact Match, GPTScore. On the other lie human reviewers armed with Likert scales, side-by-side rankings, and expert commentary. Because each layer catches slips the other misses, combining them surfaces issues that would otherwise lurk unseen.

Mind map of LLM evaluation methods including BLEU, GPTScore, BERTScore, used in AI model benchmarking and language model testing.

Image 1: Different types of evaluation methods


  1. Goals of an LLM Evaluation Framework

  • Guarantee accuracy, relevance, context; therefore, users get trustworthy answers.

  • Spot weaknesses early; thus, engineers fix flaws before release.

  • Provide firm LLM benchmarks; hence, progress becomes traceable sprint after sprint.


  1. Understanding Key LLM Evaluation Metrics

  1. Accuracy & Factual Consistency: First, cross-check every claim against a screened corpus; hallucinations thus vanish.

  2. Relevance and Contextual Fit: Similarly, make sure responses match intent; else, even accurate information loses value.

  3. Coherence and fluency: Helps to determine how natural conversations feel.

  4. Bias & Fairness: Unchecked bias destroys confidence; regular audits balance political, cultural, and demographic points of view.

  5. Diversity of Response: Also foster diversity to combat monotony.


  1. Setting Up the Development Environment

5.1 Choosing Tools and Libraries – Reach for Python plus Hugging Face Evaluate, MMEval, TruLens, TFMA, or machine-learning-evaluation; thus, pipelines snap into place.
5.2 Data Pipeline Setup – Because tests must mirror production, collect, clean, tokenize, and normalise high-quality data before each run.
5.3 Evaluation Infrastructure – Whether local or cloud, provision GPUs and fine-tune memory; consequently, large batches finish on schedule.


  1. Designing the Evaluation Framework

6.1 Test Dataset Selection

Use SQuAD for comprehension, GLUE for language understanding, TriviaQA for factual recall; in addition, craft domain-specific sets for legal, medical, or technical scenarios.

6.2 Defining Evaluation Benchmarks

BLEU safeguards multilingual parity, ROUGE measures summarisation overlap, and F1 balances precision with recall; therefore, choose metrics that reflect actual usage.

6.3 Setting Evaluation Criteria

Lock in ≥ 90 % accuracy, < 1 s latency, and strict relevance; moreover, penalise hallucinations, misinformation, and repetition so trust stays intact.


  1. Implementing the Evaluation Process

7.1 Automated Scripts

Because continuous logging flags drift, clusters of failure surface early.

7.2 Human-in-the-Loop Feedback

Nevertheless, numbers alone miss nuance; expert reviewers fine-tune contextual quality.

7.3 Continuous Monitoring & Reporting

Consequently, live dashboards spotlight strengths, weaknesses, and urgent regressions.


  1. Fine-Tuning Based on Evaluation Results

  • Dataset Refinement – Expand, filter, balance, and add edge cases; thus, coverage widens and bias shrinks.

  • Model Parameter Adjustment – Tweak learning rates, regularise weights, introduce dropout, and set batch sizes deliberately; hence, convergence stabilises.

  • Prompt & Context Adjustment – Rewrite prompts, supply constraints, and experiment with few-shot or chain-of-thought styles; consequently, answer quality climbs.


  1. Handling Common Challenges

9.1 Hallucinations

Integrate retrieval-augmented generation so facts confirm before output; hence, credibility is held.

9.2 Bias & Fairness

Diversity in data helps to expose several points of view in bias and fairness.

9.3 Overfitting

Apply dropout and weight decay; also, increase data to reduce memorisation overfitting.

9.4 Performance Bottlenecks

Use quantisation, batching, and caching to help with performance bottlenecks; hence, latency reduces.


  1. Testing and Iteration

  1. A/B Testing – Compare variants on accuracy, latency, and user satisfaction; therefore, evidence guides decisions.

  2. Stress Testing – Simulate peak traffic; as a result, infrastructure limits appear early.

  3. Versioning & Rollback – Keep stable builds on standby; consequently, faulty updates revert instantly.

  4. Adversarial Prompting Tests – Probe for bias, misinformation, and security gaps; thus, resilience improves.

  5. Conversational Consistency Tests – Ensure multi-turn threads stay logical; moreover, trust deepens.


Summary

By weaving solid LLM evaluation tools, explicit metrics, and nonstop monitoring into a single LLM evaluation framework, teams raise accuracy, relevance, and fairness while trimming risk. Through disciplined dataset curation, parameter tuning, and prompt refinement, language models evolve into dependable, high-performing assets.

Ready to Take Your LLMs to the Next Level? Future AGI brings the framework, tools, and expertise you need; therefore, reach out today and accelerate your AI journey.

FAQS

What is an LLM Evaluation Framework?

What are the key metrics used in LLM Evaluation?

Can I use custom datasets for LLM Evaluation?

What tools are commonly used for LLM Evaluation?

What is an LLM Evaluation Framework?

What are the key metrics used in LLM Evaluation?

Can I use custom datasets for LLM Evaluation?

What tools are commonly used for LLM Evaluation?

What is an LLM Evaluation Framework?

What are the key metrics used in LLM Evaluation?

Can I use custom datasets for LLM Evaluation?

What tools are commonly used for LLM Evaluation?

What is an LLM Evaluation Framework?

What are the key metrics used in LLM Evaluation?

Can I use custom datasets for LLM Evaluation?

What tools are commonly used for LLM Evaluation?

What is an LLM Evaluation Framework?

What are the key metrics used in LLM Evaluation?

Can I use custom datasets for LLM Evaluation?

What tools are commonly used for LLM Evaluation?

What is an LLM Evaluation Framework?

What are the key metrics used in LLM Evaluation?

Can I use custom datasets for LLM Evaluation?

What tools are commonly used for LLM Evaluation?

What is an LLM Evaluation Framework?

What are the key metrics used in LLM Evaluation?

Can I use custom datasets for LLM Evaluation?

What tools are commonly used for LLM Evaluation?

What is an LLM Evaluation Framework?

What are the key metrics used in LLM Evaluation?

Can I use custom datasets for LLM Evaluation?

What tools are commonly used for LLM Evaluation?

Table of Contents

Table of Contents

Table of Contents

Rishav Hada is an Applied Scientist at Future AGI, specializing in AI evaluation and observability. Previously at Microsoft Research, he built frameworks for generative AI evaluation and multilingual language technologies. His research, funded by Twitter and Meta, has been published in top AI conferences and earned the Best Paper Award at FAccT’24.

Rishav Hada is an Applied Scientist at Future AGI, specializing in AI evaluation and observability. Previously at Microsoft Research, he built frameworks for generative AI evaluation and multilingual language technologies. His research, funded by Twitter and Meta, has been published in top AI conferences and earned the Best Paper Award at FAccT’24.

Rishav Hada is an Applied Scientist at Future AGI, specializing in AI evaluation and observability. Previously at Microsoft Research, he built frameworks for generative AI evaluation and multilingual language technologies. His research, funded by Twitter and Meta, has been published in top AI conferences and earned the Best Paper Award at FAccT’24.

Related Articles

Related Articles

future agi background
Background image

Ready to deploy Accurate AI?

Book a Demo
Background image

Ready to deploy Accurate AI?

Book a Demo
Background image

Ready to deploy Accurate AI?

Book a Demo
Background image

Ready to deploy Accurate AI?

Book a Demo
Background image

Ready to deploy Accurate AI?

Book a Demo
Background image

Ready to deploy Accurate AI?

Book a Demo
Background image

Ready to deploy Accurate AI?

Book a Demo
Background image

Ready to deploy Accurate AI?

Book a Demo